Supporting internalisation of mathematical syntax using blocks

Visual blocks for mathematical syntax
www.mathsblocks.com

Anthony Morphett David Wakeham
School of Mathematics and Statistics
The University of Melbourne

Project: Maths Blocks

An interactive system for constructing \& manipulating mathematical expressions using virtual blocks.

- Visual blocks correspond to syntactical elements
- Additional visual cues indicate syntactic categories (eg. types)
\rightarrow 'reification' of tacit formal syntax

- Visual grammar of blocks mirrors mathematical grammar
\rightarrow only syntactically valid statements may be constructed
\rightarrow prevent syntax errors
- Web-based - runs in browser
- Flexible, multi-purpose framework
- Open-source
- Based on Blockly project by Google
- Inspiration from Scratch, App Inventor \& other block languages

Example: Supporting semantic reasoning

Q1. Use the blocks provided to express the statement `Every multiple of 6 is also a multiple of 3 '

Example: Blocks for vectors and scalars

Rationale

- Mathematical syntax a common area of difficulty, in particular:
- Quantifiers: $\forall \in>0 \quad \exists M \in \mathbb{N}$
- Logical connectives: $\wedge \vee \Rightarrow$
- Relations: $<\leq \neq$
- Set operators: $\in \cup \subset$
- Rarely taught explicitly/formally
- Students expected to master syntax informally through use
- Support learning with interactive activities
- Use visual cues to make formal syntax visible

r

Block for abstract operation, eg. addition, takes on shape and colour of inputs

Blocks provide scaffolding for syntax, allowing focus on semantics.

Research

Aim: To investigate how interactive graphical blocks can

- improve student awareness of syntactical structure
- improve students' ability to identify and construct meaningful and syntactically valid mathematical expressions

Methodology:

- Design-based research
- Student trials - pilot - 2nd year undergraduate analysis students
- Video analysis

Observations \& conclusions: (preliminary)

- Block system has potential to increase awareness of and fluency with syntax
- Need carefully designed exercises with reflective component for best effect
- Students lean on natural language intuitions in absence of formal grammar rules
- High expressiveness (completeness) of block language is needed for negative feedback
- More work needed to see whether benefits transfer to offline context

Future directions:

- Wider coverage eg. set notation
- Use at lower levels, eg secondary schools

